Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting.

نویسندگان

  • Daniel Friebel
  • Mary W Louie
  • Michal Bajdich
  • Kai E Sanwald
  • Yun Cai
  • Anna M Wise
  • Mu-Jeng Cheng
  • Dimosthenis Sokaras
  • Tsu-Chien Weng
  • Roberto Alonso-Mori
  • Ryan C Davis
  • John R Bargar
  • Jens K Nørskov
  • Anders Nilsson
  • Alexis T Bell
چکیده

Highly active catalysts for the oxygen evolution reaction (OER) are required for the development of photoelectrochemical devices that generate hydrogen efficiently from water using solar energy. Here, we identify the origin of a 500-fold OER activity enhancement that can be achieved with mixed (Ni,Fe)oxyhydroxides (Ni(1-x)Fe(x)OOH) over their pure Ni and Fe parent compounds, resulting in one of the most active currently known OER catalysts in alkaline electrolyte. Operando X-ray absorption spectroscopy (XAS) using high energy resolution fluorescence detection (HERFD) reveals that Fe(3+) in Ni(1-x)Fe(x)OOH occupies octahedral sites with unusually short Fe-O bond distances, induced by edge-sharing with surrounding [NiO6] octahedra. Using computational methods, we establish that this structural motif results in near optimal adsorption energies of OER intermediates and low overpotentials at Fe sites. By contrast, Ni sites in Ni(1-x)Fe(x)OOH are not active sites for the oxidation of water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution

Identification of active sites in an electrocatalyst is essential for understanding of the mechanism of electrocatalytic water splitting. To be one of the most active oxygen evolution reaction catalysts in alkaline media, Ni-Fe based compounds have attracted tremendous attention, while the role of Ni and Fe sites played has still come under debate. Herein, by taking the pyrrhotite Fe7S8 nanoshe...

متن کامل

Surface Interrogation Scanning Electrochemical Microscopy of Ni(1-x)Fe(x)OOH (0 < x < 0.27) Oxygen Evolving Catalyst: Kinetics of the "fast" Iron Sites.

Nickel-iron mixed metal oxyhydroxides have attracted significant attention as an oxygen evolution reaction (OER) catalyst for solar fuel renewable energy applications. Here, we performed surface-selective and time-dependent redox titrations to directly measure the surface OER kinetics of Ni(IV) and Fe(IV) in NiOOH, FeOOH, and Ni(1-x)Fe(x)OOH (0 < x < 0.27) electrodes. Most importantly, two type...

متن کامل

Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene.

The Fe/N/C catalysts have emerged recently as a representative class of non-Pt catalysts for oxygen electrocatalytic reduction, which could have a competitive catalytic performance to Pt. However, the nature of the catalyst remains elusive, especially on the active site structure and the electrocatalytic kinetics. Here we examine two kinds of Fe/N active sites for Fe/N/C catalysts, namely, the ...

متن کامل

An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe i...

متن کامل

M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction

Carbonaceous materials containing non-precious metal and/or doped nitrogen have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the synthesis and electrochemical properties of a new family of nitrogen-doped metal/carbon (M/N/C, M = Fe, Co, Ni) nanocomposites. The M/N/C nanocomposites, in which metal nanoparticles are embedded in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 137 3  شماره 

صفحات  -

تاریخ انتشار 2015